A central limit theorem for the sample autocorrelations of a Lévy driven continuous time moving average process

نویسندگان

  • Serge Cohen
  • Alexander Lindner
چکیده

In this article we consider Lévy driven continuous time moving average processes observed on a lattice, which are stationary time series. We show asymptotic normality of the sample mean, the sample autocovariances and the sample autocorrelations. A comparison with the classical setting of discrete moving average time series shows that in the last case a correction term should be added to the classical Bartlett formula that yields the asymptotic variance. An application to the asymptotic normality of the estimator of the Hurst exponent of fractional Lévy processes is also deduced from these results.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Central Limit Theorem in Multitype Branching Random Walk

A discrete time multitype (p-type) branching random walk on the real line R is considered. The positions of the j-type individuals in the n-th generation form a point process. The asymptotic behavior of these point processes, when the generation size tends to infinity, is studied. The central limit theorem is proved.

متن کامل

Nadaraya-Watson estimator for stochastic processes driven by stable Lévy motions

We discuss the nonparametric Nadaraya-Watson (N-W) estimator of the drift function for ergodic stochastic processes driven by α-stable noises and observed at discrete instants. Under geometrical mixing condition, we derive consistency and rate of convergence of the N-W estimator of the drift function. Furthermore, we obtain a central limit theorem for stable stochastic integrals. The central li...

متن کامل

On the Conditional Small Ball Property of Multivariate Lévy-driven Moving Average Processes

We study whether a multivariate Lévy-driven moving average process can shadow arbitrarily closely any continuous path, starting from the present value of the process, with positive conditional probability, which we call the conditional small ball property. Our main results establish the conditional small ball property for Lévy-driven moving average processes under natural non-degeneracy conditi...

متن کامل

Moving Average Processes with Infinite Variance

The sample autocorrelation function (acf) of a stationary process has played a central statistical role in traditional time series analysis, where the assumption is made that the marginal distribution has a second moment. Now, the classical methods based on acf are not applicable in heavy tailed modeling. Using the codifference function as dependence measure for such processes be shown it be as...

متن کامل

Extremes of Subexponential Lévy Driven Moving Average Processes

In this paper we study the extremal behavior of a stationary continuoustime moving average process Y (t) = ∫∞ −∞ f(t−s) dL(s) for t ∈ R, where f is a deterministic function and L is a Lévy process whose increments, represented by L(1), are subexponential and in the maximum domain of attraction of the Gumbel distribution. We give necessary and sufficient conditions for Y to be a stationary, infi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012